RELAZIONE FOGNE BIANCHE E INVARIANZA IDRAULICA

Ipotesi di piano industriale per la nuova Area Logistico-Produttiva per Prodotti Alimentari a base di Carne Avicola (ALPPACA) sito nel Comune di Forlimpopoli (FC), Provincia di Forlì-Cesena

COMMISSIONATA DA: GE.SCO S.R.L.

Relazione tecnica redatta e asseverata dal tecnico progettista:

Massimo Ing. Plazzi

PRIDE – Projects and IDeas for Environment Via Maceo Casadei 19, 47121 – Forlì (FC)

Rev.	Data		
0	30/12/2021	Prima emissione	

0. PREMESSA

Nella presente relazione si fa riferimento alle scelte metodologiche e progettuali adottate per il dimensionamento dei dispositivi atti a garantire l'invarianza idraulica (in osservanza all'Art. 9 "*Invarianza idraulica*" delle Norme di Piano del vigente Piano Stralcio di bacino per il Rischio Idrogeologico) e dell'intera rete di drenaggio delle acque meteoriche, a servizio del progetti denominato: "IPOTESI DI SVILUPPO PROGRAMMATICO DELLA NUOVA AREA LOGISTICO-PRODUTTIVA SITA NEL COMUNE DI FORLIMPOPOLI, DENOMINATA "ALPPACA", da realizzarsi in Comune di Forlimpopoli nell'area ricompresa, a grandi linee sui quattro fronti, tra Via Savadori – Via del Paganello – Via Giulio II – Via San Leonardo.

Figura 1. Inquadramento dell'area in esame su base fotografica aerea (fonte Google Earth)

L'intervento prevede la realizzazione di una nuova area logistico-produttiva privata. Inoltre, verranno realizzate nuove arterie di viabilità pubblica a servizio della nuova area e due parcheggi pubblici, uno a servizio del previsto nuovo archivio comunale (via del Paganello) e uno ubicato vicino all'ingresso del nuovo lotto fondiario di proprietà.

Per ulteriori dettagli di tipo edilizio-urbanistico si rimanda alla relazione tecnica del piano attuativo; qui vengono richiamati solamente i dati strettamente necessari (superfici permeabili/impermeabili, aree complessive trasformate, ...) ai presenti calcoli idraulici.

Per una chiara comprensione di tutto quanto verrà di seguito esposto, si rimanda alla visione degli specifici elaborati grafici di progetto relativi alle reti fognarie bianche.

Tutte le grandezze in gioco sono state stimate cautelativamente al fine di dimensionare l'intervento con un buon margine di sicurezza idraulica.

Inoltre, l'iter progettuale ha sempre tenuto in debita considerazione tutte le prescrizioni (generali e particolari) e/o le regole di buona pratica costruttiva fornite dagli Enti gestori del territorio in senso lato (Comune di Forlimpopoli, HERA, Consorzio di Bonifica della Romagna, Autorità Distrettuale del Fiume Po [ex Autorità dei Bacini Regionali Romagnoli]) ed in special modo quelle imposte in materia di invarianza idraulica, ove si rende necessario applicare sia come impostazione concettuale che come metodologia di calcolo l'Art. 9 "Invarianza idraulica" del vigente Piano Stralcio di bacino per il Rischio Idrogeologico e s.m.i., redatto dall'ex Autorità dei Bacini Regionali Romagnoli competente sull'intero territorio comunale.

1. METODO DI CALCOLO DEI VOLUMI DI COMPENSAZIONE IDRAULICA

Innanzitutto occorre sottolineare che per calcolare i volumi di stoccaggio temporaneo dei deflussi ai fini dell'invarianza idraulica sono stati utilizzati i parametri predisposti dall'Autorità di Bacino, secondo il metodo di calcolo contenuto nella normativa del Piano Stralcio. In particolare, il Comma 5 dell'Art. 9 del Piano Stralcio recita che "... il volume minimo di cui ai commi precedenti deve essere calcolato secondo la procedura riportata nel capitolo 7 della "Direttiva per le verifiche e il conseguimento degli obiettivi di sicurezza idraulica", approvata con Delibera Comitato Istituzionale n. 3/2 del 20/10/2003 e s.m. e i., che vale ai fini del presente articolo come Regolamento di Attuazione. I Comuni, nell'approvare gli interventi previsti dagli strumenti urbanistici e regolamenti comunali, ... verificano la rispondenza dei piani attuativi e dei progetti ai requisiti di volume di invaso. In base alle indicazioni tecniche ... sono fissati i criteri per considerare nel computo del volume richiesto anche il contributo delle reti fognarie ..." (al cap. 7 della Direttiva Idraulica del Piano si richiama infatti la pubblicazione [Ingegneria Ambientale, 2001] "La valutazione idrologica dei piani urbanistici. Un metodo semplificato per l'invarianza idraulica dei piani regolatori generali" dell'Ing. A. Pistocchi, all'interno della quale si assume di "... computare solo l'80% del volume geometrico disponibile ...").

Tutto ciò premesso, si specificheranno nella presente relazione solamente gli elementi di valutazione ed i riferimenti più importanti, fatto salvo tutto quanto è prescritto e definito nelle norme, articoli e pubblicazioni succitate.

Si riporta di seguito uno stralcio fondamentale del cap. 7 della Direttiva Idraulica, citato dall'Art. 9 del Piano Stralcio:

"... i Piani Regolatori adottano come misura del volume minimo d'invaso da prescrivere in aree sottoposte a una quota di impermeabilizzazione I (% dell'area che viene trasformata) e in cui viene lasciata inalterata una quota P (tale che I + P = 100%) il valore convenzionale:

$$W = w^{\circ} \left(\frac{\phi}{\phi^{\circ}}\right)^{\frac{1}{1-n}} - 15 I - w^{\circ} P$$

essendo w° = 50 mc/ha, ϕ coefficiente di deflusso dopo la trasformazione, ϕ ° coefficiente di deflusso prima della trasformazione, n = 0.48 (esponente delle curve di possibilità climatica di durata inferiore all'ora, stimato nell'ipotesi che le percentuali della pioggia oraria cadute nei 5', 15' e 30' siano rispettivamente il 30%, 60% e 75%, come risulta plausibile da numerosi studi sperimentali citati in letteratura - si veda ad es. Paoletti, 1996 -), ed I e P espressi come frazione dell'area trasformata. Il volume così ricavato è espresso in mc/ha e deve essere moltiplicato per l'area totale dell'intervento, a prescindere dalla quota P che viene lasciata inalterata.

Per la stima dei coefficienti di deflusso $\phi e \phi^{\circ}$ si fa riferimento alla relazione convenzionale:

$$\phi^{\circ} = 0.9 \text{ Imp } ^{\circ} + 0.2 \text{ Per}^{\circ} - \phi = 0.9 \text{ Imp } + 0.2 \text{ Per}$$

In cui Imp e Per sono rispettivamente le frazioni dell'area totale da ritenersi impermeabile e permeabile, prima della trasformazione (se connotati dall'apice °) o dopo (se non c'è l'apice °). In linea generale, si dovrà ritenere permeabile ogni superficie non rivestita con pavimentazioni di alcun genere, mentre per pavimentazioni dal carattere semipermeabile si dovrà valutare caso per caso in sede di concessione edilizia anche sulla base delle specifiche tecnologiche dei prodotti impiegati. È da notare che anche le aree che non vengono pavimentate con la trasformazione, ma vengono sistemate e regolarizzate, devono essere incluse a computare la quota I. La quota P dell'area in trasformazione è costituita solo da quelle parti che non vengono significativamente modificate, mediante regolarizzazione del terreno o altri interventi anche non impermeabilizzanti, dalla trasformazione ...".

Le varie tipologie di superficie vengono ulteriormente chiarite e specificate dalla direttiva tecnica dell'Autorità di bacino del 20/10/2003 e s.m.i., che cita testualmente:

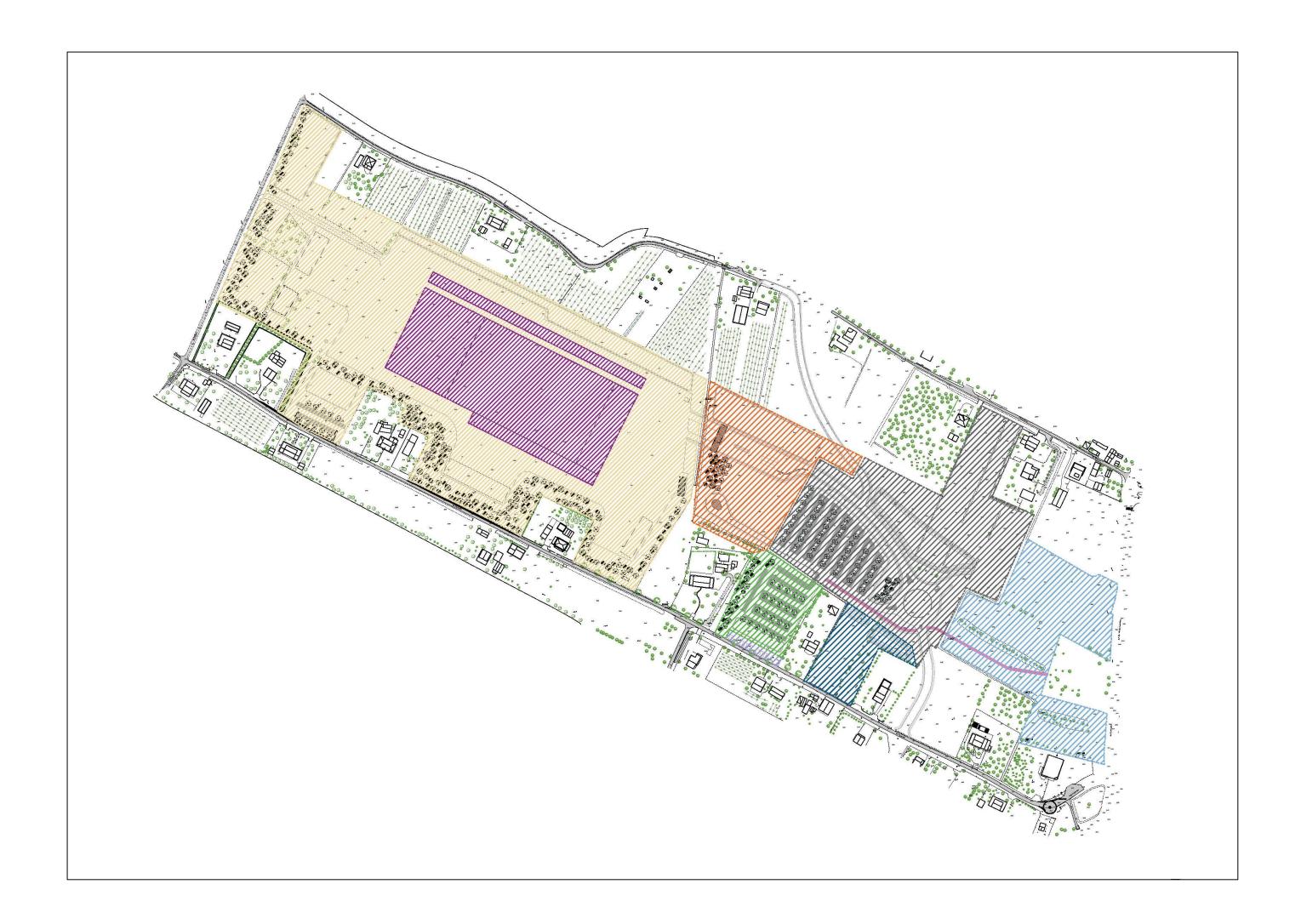
"... Si pone il problema di valutare che cosa sia permeabile. In generale, ogni tipo di copertura che consenta la percolazione nel suolo almeno ai tassi d'infiltrazione propri del suolo "naturale" in posto è da considerare permeabile. Sono quindi certamente permeabili tutte le superfici mantenute a verde, a meno dell'ovvio controesempio di verde al di sopra di elementi interrati quali scantinati e similari, e di giardini pensili. Le coperture del suolo che possono essere considerate permeabili comprendono il caso delle griglie plastiche portanti e di dispositivi similari. Si tratta di strutture di pavimentazione costituite da elementi a griglia con percentuale di vuoti molto alta, e con caratteristiche tali da non indurre una compattazione spinta del terreno. Nel caso invece di elementi di pavimentazione tipo "Betonella" e similari, occorre valutare caso per caso il grado di impermeabilizzazione indotto, anche tenendo conto che, essendovi una percentuale di vuoti molto minore e una forte possibilità di compattazione del terreno al di sotto e negli interstizi degli elementi di pavimentazione, si può configurare una situazione di impermeabilità di fatto. Con le stesse cautele devono essere trattate le superfici in misto granulare stabilizzato e altri materiali analoghi. In linea di massima, si può considerare superfici di queste ultime due tipologie come permeabili al 50%. Sono invece certamente impermeabili le superfici asfaltate e cementificate, oltre alle coperture degli edifici anche qualora presentino elementi a verde, giardini pensili ecc ...".

Alla luce di quanto riportato nella Direttiva Idraulica del Piano Stralcio, la grandezza più importante da valutare per il computo dei volumi di compensazione idraulica è l'incidenza delle superfici permeabili pre e post intervento.

2. CALCOLO DEI VOLUMI PER L'INVARIANZA IDRAULICA

Per la determinazione dei volumi da garantire per l'invarianza idraulica sono stati condotti i calcoli riportati nella "Direttiva inerente le verifiche idrauliche e gli accorgimenti tecnici da adottare per conseguire gli obiettivi di sicurezza idraulica definiti dal Piano Stralcio per il Rischio Idrogeologico, ai sensi degli artt. 2 ter, 3, 4, 6, 7, 8, 9, 10, 11 del Piano".

Per determinare i volumi invarianti si è scelto di suddividere l'area di intervento in "sub-comparti idraulici indipendenti", definiti in base alla conformazione dei lotti stessi, alla futura proprietà (pubblico/privato), all'orografia locale (possibili recettori, rete di bonifica) ed in base agli scarichi di fognatura bianca che verranno realizzati per ciascun comparto.


Si riporta di seguito la planimetria con l'area di intervento complessiva, con evidenziati i citati "sub-comparti idraulici".

I comparti nei quali è stata suddivisa l'area totale di intervento sono i seguenti: (da 1 a 4 pubblici, 5 a/b e 6 a/b privati):

- Comparto 1: Rappresentato in azzurro. In tale sub comparto pubblico verrà realizzato una pista ciclabile.
- Comparto 2: Rappresentato in grigio. In tale sub comparto pubblico verrà realizzato un parcheggio vicino al lotto privato di nuova realizzazione e la relativa viabilità di accesso.
- Comparto 3: Rappresentato in blu. In tale sub comparto pubblico verrà realizzato il nuovo archivio comunale ed i relativi parcheggi pertinenziali, con verde pertinenziale.
- Comparto 4: Rappresentato in viola. In tale sub comparto pubblico verrà realizzato un modesto parcheggio pertinenziale (con stalli direttamente accessibili da strada) di modeste dimensioni, sulla via del Paganello.

• **Comparto 5a: Rappresentato in verde**. Questo sub comparto prevede la realizzazione di un parcheggio privato a servizio del lotto di nuova costruzione.

- Comparto 5b: Rappresentato in arancione. In questo sub comparto verranno realizzate le strade a servizio e di accesso (zona guardiola) al lotto privato.
- Comparto 6a: Rappresentato in giallo. Il sub-comparto coincide con i piazzali del lotto fondiario in quanto esso colletterà le acque meteoriche dei piazzali interni.
- Comparto 6b: Rappresentato in magenta. Questo sub-comparto coincide con le varie coperture del futuro capannone, cioè con le acque pluviali dei tetti.

La grandezza fondamentale da valutare per il computo dei volumi minimi di compensazione idraulica da reperire ai fini dell'invarianza idraulica è rappresentata dall'incidenza delle superfici permeabili e impermeabili pre e post intervento.

Si riportano le tabelle con il confronto delle superfici costituenti le aree in esame, caratterizzanti lo stato ante e post operam.

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	27292.32 mq	26915.4 mq
Superficie impermeabile	0 mq	376.92 mq
Superficie semipermeabile	0 mq	0 mq
TOTALE	27292.32 mg	27292.32 mg

Superfici **comparto 1** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	48054.51 mq	33983.39 mq
Superficie impermeabile	0 mq	33983.39 mq 8888.12 mq 5183.12 mq
Superficie semipermeabile	0 mq	5183.12 mq
TOTALE	48054.51 mq	48054.51 mq

Superfici **comparto 2** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	7248.80 mq	4574.99 mq
Superficie impermeabile	0 mq	1791.36 mq
Superficie semipermeabile	0 mq	882.45 mq
TOTALE	7248.80 mq	7248.80 mq

Superfici **comparto 3** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	817.64 mq	550.77 mq
Superficie impermeabile	0 mq	266.87 mq
Superficie semipermeabile	0 mq	0 mq
TOTALE	817.64 mq	817.64 mq

Superfici **comparto 4** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	9126.54 mq	4661.62 mq
Superficie impermeabile	0 mq	1985.24 mq
Superficie semipermeabile	0 mq	2479.68 mq
TOTALE	9126.54 mq	9126.54 mq

Superfici **comparto 5a** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	21567.87 mq	15910.72 mq
Superficie impermeabile	0 mq	5239.56 mq
Superficie semipermeabile	0 mq	417.59 mq
TOTALE	21567.87 mq	21567.87 mq

Superfici **comparto 5b** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	107805.68 mq	54041.05 mq
Superficie impermeabile	0 mq	53189.65 mq
Superficie semipermeabile	0 mq	574.98 mq
TOTALE	107805.68 mq	107805.68 mq

Superfici **comparto 6a** ante e post operam

	STATO ATTUALE	STATO DI PROGETTO
Superficie permeabile	37034.35 mq	0 mq
Superficie impermeabile	0 mq	37034.35 mq
Superficie semipermeabile	0 mq	0 mq
TOTALE	37034.35 mq	37034.35 mq

Superfici **comparto 6b** ante e post operam

Si riporta di seguito la planimetria dello stato di progetto (dello stato di fatto non serve, in quanto da ritenersi integralmente permeabile), con in evidenza la natura delle superfici. In particolare, sono rappresentate in verde le aree permeabili, in blu le aree semipermeabili ed infine con campitura rosa le aree impermeabili.

Si riporta ora per ciascun sub comparto i calcoli condotti per determinare i volumi da reperire per garantire il rispetto del principio di invarianza idraulica

COMPARTO 1

Lo stato pre intervento del comparto 1 è costituito da una superficie permeabile di 27292.32 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 26915.4 mq, una porzione di 376.92 mq impermeabile e aree semipermeabili nulle.

Si ottiene così:

W tot = 17.79 mc

inserire i dati esclusivamente nei campi cerchiati)															
Superficie fondial	ia =	27'292.32	mq					uperficie				terno	del nuc	NO	
NITE OPED AN					_	scarico	acc	que mete	orich	ne di pro	getto				
NTE OPERAM Superficie impermeabile esisten	to -	0.00	ma			incoriro	il 1/	00 % dell	0.011	porficio	imporm	oobile			
Superficie impermeabile esister	IC -	0.00	шч					lla superf							
Imp°	=	0.00				0 11 00 70	uci	па зарен		ai Stabili	22010/51	Ctoric	iia oto.		
		0.00													
Superifice permeabile esisten	te =	27'292.32	mq			inserire	il 10	00 % dell	a su	perficie	permea	bile (v	verde o	agricola)	
						e il 50%	de	lla superf	icie d	di stabili	zzato/b	etone	lla etc.		
Per°	=	1.00			_										-
Imp°+Pe	r° =	1.00				corretto	: ris	ulta pari	a 1						+
inp 11 c		1.50				30.70110		and puil							
POST OPERAM															
Superficie impermeabile di proget	to =	376.92	mq			inserire	il 10	00 % dell	a su	perficie	imperm	eabile	9		
						e il 50%	de	lla superf	icie (di stabili	zzato/b	etone	lla etc.		
lmp	=	0.01													
Superficie permeabile proget	to -	26'915.40	ma		-	incoriro	il 1/	00 % della	2 6111	norficio	normoa	hilo (rordo o	agricola)	+
Superficie permeabile proger		20 913.40	шч					lla superf			•			agi icola)	
Per	-	0.99				e ii 50%	ae	iia superi	icie (ui Stadiii	22al0/bi	etone	iia etc.		
lmp+P	er =	1.00				corretto	: ris	ulta pari	a 1						
NDICLDLTD ACCORMAZIONE DELLIADEA					-										
NDICI DI TRASFORMAZIONE DELL'AREA Superficie trasformata/livella	to -	1'376.92	ma			incoriro	lo o	superficie	di tu	ıtta la ar	oo non	oario	olo		-
Superficie trasformata/livella	la =	1370.92	шч					Compre				ayııcı	JIE		
	1 =	0.05				ui progo	lio.	Compre	JC 41	icc vere					
Superficie agricola inaltera	ta =	25'915.40	mq					uperficie							
	P =	0.95				(ovvero	ıa s	superficie	agrı	coia ina	iterata)				+
		0.00													
Н	P =	1.00				corretto	: ris	ulta pari	a 1						
CALCOLO DEI COEFFICIENTI DI DEFLUSSO ANTE	OPE	DAM E DOS	ים ד	DED	ΔМ										
	.9 x	0.00		0.2		1.00		0.20	\vdash	φ°					+
· · · · · · · · · · · · · · · · · · ·	.9 x			-					\vdash						+
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} = 0.00$.9 Х	0.01	+	0.2	X	0.99	=	0.21	\vdash	ф					+
					-				\vdash						+
CALCOLO DEL VOLUME MINIMO DI INVASO															
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50 x	1.10	-	15	х	0.05	-	50	x	0.95	=	6.52	mc/ha	w	
	_													w	

Le linee guida del Piano Stralcio per il Rischio Idrogeologico forniscono una classificazione degli interventi di trasformazione delle superfici, che permette di definire soglie dimensionali in base alle quali applicare considerazioni differenziate in relazione all'effetto atteso dell'intervento.

La classificazione è riportata nella seguente tabella:

Classificazione degli interventi di trasformazione delle superfici ai fini dell'invarianza idraulica

Classe di Intervento	Definizione
Trascurabile impermeabilizzazione potenziale	Intervento su superfici di estensione inferiore a 0.1 ha
Modesta impermeabilizzazione potenziale	Intervento su superfici comprese fra 0.1 e 1 ha
Significativa impermeabilizzazione potenziale	Intervento su superfici comprese fra 1 e 10 ha; interventi su superfici di estensione oltre 10 ha con Imp<0,3
Marcata impermeabilizzazione potenziale	Intervento su superfici superiori a 10 ha con Imp>0,3

L'intervento in esame, piuttosto particolare, è da ritenersi ricadere nel caso degli interventi a "trascurabile impermeabilizzazione potenziale" in quanto, per quanto grande, viene mantenuto quasi totalmente a verde eccezion fatta per la superficie della pista ciclabile, di estensione ben minore di 0.1 ha: non è necessario dunque procedere ad un'ulteriore verifica.

Tale scelta progettuale è stata valutata in quanto nel comparto in esame verrà, come detto, realizzata solamente una pista ciclabile, invece la parte restante del lotto non verrà modificata in qualsiasi modo e lasciata come si presenta allo stato attuale.

Pertanto il volume da reperire risulta essere pari a 17.79 mc.

COMPARTO 2

Lo stato pre intervento del comparto 2 è costituito da una superficie permeabile di 48054.51 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento, si individua una superficie permeabile pari a 33983.39 mq, una porzione di 8888.12 mq impermeabile e aree semipermeabili pari a 5183.12 mq.

Si ottiene così:

W tot = 672.01 mc

nserire i dati esclusivamente nei campi cer	rchiati)															
Super	ficie fondiaria	=	48'054.51	mq			inserire	la s	superficie	tot	ale scola	ante	all'interno	del nuc	OVO	
							scarico	acc	que mete	oric	he di pro	oget	tto			
ANTE OPERAM																
Superficie impermea	bile esistente	=	0.00	mq									permeabile			
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	lmp°	=	0.00							Ш						
Cunavifica narmas	hilo opiotopto		48'054.51				inaarira	:1 4	00.0/ 451				maabila (a aria ala)	-
Superifice permea	iblie esistente	=	48 054.51	mq							•		meabile (agricola)	
	Per°	=	1.00				e il 50%	de	lla superf	icie	dı stabil	IZZ	ato/betone	lla etc.		
	rei	=	1.00							Н						
	Imp°+Per°	=	1.00				corretto	: ris	sulta pari	a 1						
POST OPERAM																
Superficie impermeab	ile di progetto	=	11'479.68	mq			inserire	il 1	00 % dell	a s	uperficie	imp	permeabile	Э		
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	lmp	=	0.24													
														L		
Superficie perme	abile progetto	=	36'574.89	mq	_						•	•	meabile (agricola)	H
	D		0.70				e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		-
	Per	=	0.76							Н						
	Imp+Per	=	1.00				corretto	: ris	sulta pari	a 1						
	·															
NDICI DI TRASFORMAZIONE DELL'ARE	Α															
Superficie trasfor	mata/livellata	=	39'782.71	mq									non agric	ole		
							di proge	tto.	Compre	se	aree ver	ib				
		=	0.83													
Superficie agric	ola inaltarata		8'271.80	ma			incoriro	la c	superficie	20	ricola di	pro	notto			
Superficie agric	Joia il iaiterata	-	02/1.00	IIIIq					superficie							
	Р	=	0.17				(0110.0		заротного	ug			uiu)			
								Ц								
	I+P	=	1.00				corretto	: ris	sulta pari	a 1						
								Ш		Ш		Ш				L
CALCOLO DEI COEFFICIENTI DI DEFLU	SSO ANTE O	PF	RAM F POS	T O	PFR	ΔМ										
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$			0.00		0.2		1.00		0.20	Н	φ°	Н				
												Н				\vdash
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	Х	0.24	+	0.2	Х	0.76	=	0.37	Н	ф	Н				-
										Н		Н				
CALCOLO DEL VOLUME MINIMO DI INV	ASO															
$W=W^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - W^{\circ}P =$	50	х	3.22	-	15	х	0.83	-	50	х	0.17	=	139.84	mc/ha	w	
W = w x Superficie fondiaria (ha) =			0.22				139.84						672.01	-	w	
vv = w x Superficie fortularia (fia) =		\Box				_	139.64	X	40 000		10 000	=	0/2.01	IIIC	VV	

Le linee guida del Piano Stralcio per il Rischio Idrogeologico forniscono una classificazione degli interventi di trasformazione delle superfici, che permette di definire soglie dimensionali in base alle quali applicare considerazioni differenziate in relazione all'effetto atteso dell'intervento.

La classificazione è riportata nella precedente tabella.

L'intervento in esame ricade nel caso degli interventi a "significativa impermeabilizzazione potenziale" in quanto la superficie di estensione è compresa tra 1 ha e 10 ha: è necessario dunque procedere ad un'ulteriore verifica.

È stata quindi svolta la verifica della volumetria per piogge con tempo di ritorno pari a 30 anni e durata di due ore.

Viene riportato di seguito il foglio di calcolo della verifica svolta.

Come si evince dall'immagine, con tale metodo di calcolo si ottiene un volume maggiore a W (672.01 mc) e pertanto il volume da reperire risulta essere cautelativamente pari a **696.89 mc.**

Da effettuarsi per casi di Su	perficie fondiari	a > 1 ha				
nserire dati esclusivamente						
	•					
Superficie fondiaria	4.81	ha	superfici	e totale dell'i	intervento	
TR	30	anni	tempo d	i ritorno di rif	erimento	
а	48		inserire	parametro di	zona (vedi tabella)
n	0.30		inserire	parametro di	zona (vedi tabella)
tp	2.00	ore	durata d	i pioggia		
ф	0.37		coeff. di	deflusso dop	oo la trasformazion	ne
h	59.09	mm	altezza	pioggia in tp		
Vp	2'839.78	mc	Volume	piovuto in tp		
Ve	1'042.83	mc	Volume	effluente in v	asca in tp	
Qu	48.05	l/sec	Portata	scaricabile d	alla strozzatura a	dottata
Vu	345.94	mc	Volume	scaricato da	lla vasca nel ricett	ore in tp
Ve-Vu	696.89	mc	Volume	da laminare	per evento TR 30	d 2 ore
W	672.01	mc	Volume	di laminazio	ne (formula del w)	
	NON VERIFICA	ATO: NECES	SARIO A	ADEGUAME	NTO VOLUME	
	W FINALE da	adottare=		696.89	mc	
	The last du					
Per Tp>1h e TR 30 anni	RIMINI	CESENA	FORLI	RAVENNA		
a	51		48			
n	0.27	0.29	0.30	0.28		

COMPARTO 3

Lo stato pre intervento del comparto 3 privato è costituito da una superficie permeabile di 7248.80 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 4574.99 mq, una porzione di 1791.36 mq impermeabile e aree semipermeabili pari a 882.45 mq.

Si ottiene così:

W tot = 137.07 mc

inserire i dati esclusivamente nei campi cer	chiati)															
			=======================================					Ш								
Super	ficie fondiaria	=	7'248.80	mq	_								all'interno	del nuc	OVO	
NTE OPERAM				-			scanco	acc	que mete	OHC	ne ai pro	ogei	.10			
Superficie impermeal	hile esistente	_	0.00	ma			inserire	il 10	00 % dell	2 61	ınerficie	imr	permeabile			
Supernete impermed	DIIC COIOTCI IC	-	0.00	mq									ato/betone			
	lmp°	=	0.00				0 11 00 70	uu	па очроп		ai otabii		210, 5010110	iia oto.		
	•															
Superifice permea	bile esistente	=	7'248.80	mq			inserire	il 10	00 % dell	a sı	uperficie	per	meabile (verde o	agricola)	
							e il 50%	de	lla superf	icie	di stabil	lizza	ato/betone	lla etc.		
	Per°	=	1.00													
	Imp°+Per°		1.00				corretto	· rio	sulta pari	0.1		Н				-
	iiip +rei	=	1.00				CONCIO	. 115	ouita Pall	a I		\vdash				
OST OPERAM												\Box				
Superficie impermeabi	ile di progetto	=	2'232.59	ma			inserire	il 10	00 % dell	a sı	uperficie	imr	permeabile	9		
Caponicio impenincasi	a. p. egette		2202.00	9							•		ato/betone			
	lmp	=	0.31				E II 30 /6	ue	iia Superi	ICIE	ui Stabii	1220	ato/betone	iia etc.		
Superficie permea	abile progetto	=	5'016.22	mq			inserire	il 10	00 % dell	a sı	uperficie	per	meabile (verde o	agricola)	
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	Per	=	0.69													
	Imp+Per	-	1.00				corretto	· ris	sulta pari	a 1		Н				
	milpii oi		1.00				COTTORIO		rana pan	ŭ .		Н				
IDICI DI TRASFORMAZIONE DELL'AREA	Α															
Superficie trasfor	mata/livellata	=	7'248.80	mq			inserire	la s	superficie	di t	utte le a	ree	non agric	ole		
							di proge	tto.	Compre	se a	aree ver	di				
	I	=	1.00													
Our official and	-1- :		0.00										44 -			-
Superficie agric	oia inaiterata	=	0.00	mq					superficie superficie							
	Р	=	0.00				(00000	la 3	зарстного	agi	ncola inc		alaj			
	I+P	=	1.00				corretto	: ris	ulta pari	a 1						
ALCOLO DEI COEFFICIENTI DI DEFLUS	SSO ANTE O	PFF	RAM F POS	TΩ	PFR	ΔМ										
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$	0.9		0.00		0.2		1.00		0.20		φ°					
											-					
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	Х	0.31	+	0.2	Х	0.69	=	0.42	H	ф	\square				
				-						H		\square				
ALCOLO DEL VOLUME MINIMO DI INVA	ASO															
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50	х	4.08	-	15	х	1.00	-	50	x	0.00	=	189.09	mc/ha	w	
			.,,,,													_

L'intervento in esame ricade nel caso degli interventi a "modesta impermeabilizzazione potenziale" in quanto la superficie di estensione è compresa tra 0.1 ha e 1 ha: non è necessario dunque procedere ad un'ulteriore verifica.

Pertanto il volume da reperire risulta essere pari a 137.07 mc.

COMPARTO 4

Lo stato pre intervento del comparto 4 è costituito da una superficie permeabile di 817.64 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 550.77 mq, una porzione di 266.87 mq impermeabile e aree semipermeabili nulle.

Si ottiene così:

W tot = 16.47 mc

inserire i dati esclusivamente nei campi cer	chiati)															
								Ш								
Super	ficie fondiaria	=	817.64	mq									all'interno	del nuc	OVO	
NITE ODED AM							scarico	acc	que mete	oric	he di pro	ogeti	to			
NTE OPERAM	hilo ooistaata	-	0.00				inaarira	:1 4/	20 0/ dall		fisis	iman	ermeabile	_		
Superficie impermea	bile esisterite	=	0.00	шч									to/betone			
	lmp°	=	0.00				E II 30 /6	ue	iia Superi	ICIE	ui Stabii	ILLA	ilo/belone	ila etc.		
		-	0.00													
Superifice permeal	bile esistente	=	817.64	mq			inserire	il 10	00 % dell	a sı	uperficie	peri	meabile (verde o	agricola)	
							e il 50%	de	lla superf	ficie	di stabil	lizza	to/betone	lla etc.		
	Per°	=	1.00													
	b 0 - D 0		4.00							- 4		Н				
	Imp°+Per°	=	1.00				corretto	: ris	ulta pari	a 1		Н				
POST OPERAM		\vdash						Н				\Box				
Superficie impermeabi	ile di progetto		266.87	ma			inserire	il 10	വ % പലി	2 61	ınerficie	imn	ermeabile	_		
Superficie impermeasi	ile di progetto		200.07	шч							•					
	lmp	=	0.33				e II 50%	ae	iia superi	icie	ai stadii	ızza	to/betone	ella etc.		
	"IIIP	-	0.00													
Superficie permea	abile progetto	= [550.77	mq			inserire	il 10	00 % dell	a sı	uperficie	peri	meabile (verde o	agricola)	
							e il 50%	de	lla superf	ficie	di stabil	lizza	to/betone	lla etc.		
	Per	=	0.67													
	Imp+Per		1.00				corrette	· rio	ulto pori	0.1		Н				
	imp+Per	=	1.00				corretto	: HS	ulta pari	ат		Н				
NDICI DI TRASFORMAZIONE DELL'AREA	Δ															
Superficie trasfor		_ [817.64	ma			inserire	la s	uperficie	di t	utte le a	ree i	non agric	ole		
Caponicio il dello	- India ii Voliata		011101						Compre				o ago.	0.0		
	I	=	1.00				, ,									
								Ш								
Superficie agric	cola inalterata	=	0.00	mq					uperficie							
	P	=	0.00				(ovvero	ia s	uperficie	agr	ricola ina	aitera	ata)			
		-	0.00							Н		Н				
	I+P	=	1.00				corretto	: ris	ulta pari	a 1						
ALCOLO DEL COEFFICIENTI DI BESI VI	000 MITE 0	DES	AM E DOO	т 🔿	DED	A B #										
CALCOLO DEI COEFFICIENTI DI DEFLUS								Н		\vdash	1.0	\vdash				
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$	0.9		0.00		0.2		1.00		0.20		φ°	\vdash				
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	Х	0.33	+	0.2	X	0.67	=	0.43		ф	Н				
								Н		H		\forall				
CALCOLO DEL VOLUME MINIMO DI INVA								Н		Н		\vdash				
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50	Х	4.33	-	15	Х	1.00		50		0.00			mc/ha	w	
W = w x Superficie fondiaria (ha) =							201.42	Х	818	:	10'000	=	16.47	mc	W	

L'intervento in esame ricade nel caso degli interventi a "trascurabile impermeabilizzazione potenziale" in quanto la superficie di estensione è minore di 0.1 ha: non è necessario dunque procedere ad un'ulteriore verifica.

Pertanto il volume da reperire risulta essere pari a **16.47 mc.**

COMPARTO 5a

Lo stato pre intervento del comparto 5a è costituito da una superficie permeabile di 9126.54 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 4661.62 mq, una porzione di 1985.24 mq impermeabile e aree semipermeabili pari a 2497.68 mq.

Si ottiene così:

W tot = 200.91 mc

inserire i dati esclusivamente nei campi cer	chiati)															
Super	ficie fondiaria	=	9'126.54	mq					uperficie				terno	del nuo	OVO	_
							scarico	acc	que mete	oric	he di pro	getto				-
NTE OPERAM		_	0.00						20.0/ 1.11		. .					-
Superficie impermea	bile esistente	=	0.00	mq					00 % della lla superf							-
	lmp°	=	0.00				e II 50%	aeı	iia superr	icie	di stadili	zzato/b	etone	iia etc.		+
	iiip	-	0.00					Н		Н						
Superifice permeal	bile esistente	=	9'126.54	mq			inserire	il 10	00 % della	a sı	perficie	permea	bile (verde o	agricola)	
									lla superf		•				,	
	Per°	=	1.00													
								Щ								
	Imp°+Per°	=	1.00				corretto	: ris	ulta pari	a 1						+
POST OPERAM		\dashv						\vdash		\vdash						+
Superficie impermeabi	le di progetto		3'225.08	ma			inserire	il 10	00 % della	2 61	ınerficie	imnerm	eahila			+
Supernote impermeasi	ic ai progetto	-	J 22J.00	mq							•					+
	lmp	=	0.35				e II 50%	aei	lla superf	icie	ui stabili	∠zato/b	econe	iia etc.		+
	IIIIP	-	0.00					Н								
Superficie permea	abile progetto	=	5'901.46	mq			inserire	il 10	00 % della	a sı	perficie	permea	bile (۱	verde o	agricola)	
							e il 50%	del	lla superf	icie	di stabili	zzato/b	etone	lla etc.		
	Per	=	0.65													
	lmp+Per		1.00				corretto	· ric	ulta pari	2 1						-
	шірті еі	-	1.00				Corretto	. 113	uita pari	a i						
NDICI DI TRASFORMAZIONE DELL'AREA	4															
Superficie trasfor		=	9'126.54	mq			inserire	la s	uperficie	di t	utte le ai	ee non	agrico	ole		
									Compre							
	I	=	1.00													
0 ": :	1 1 1 1	_	0.00													-
Superficie agric	ola inalterata	=	0.00	mq					superficie superficie							-
	Р	=	0.00				(Ovveio	ia s	upernoie	ayı	icola ii la	illerala)				+
	I+P	=	1.00				corretto	: ris	ulta pari	a 1						
								Ш		Ш						
CALCOLO DEI COEFFICIENTI DI DEFLUS	SSO ANTE O	PF	ZAM F POS	TO	PER A	M										
$\phi^{\circ} = 0.9 \times \text{Imp}^{\circ} + 0.2 \times \text{Per}^{\circ} =$	0.9		0.00		0.2		1.00		0.20	\vdash	φ°					+
· · · · · · · · · · · · · · · · · · ·					-					H						+
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	Х	0.35	+	0.2	Х	0.65	=	0.45	H	ф					+
		\Box						Н		\square						-
CALCOLO DEL VOLUME MINIMO DI INVA	ASO															
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$		х	4.70	-	15	_	1.00		50	v	0.00	_ 22	00 14	mc/ha	w	
W=W° (f/f°)("\" - 15 I – W°P = I																

L'intervento in esame ricade nel caso degli interventi a "modesta impermeabilizzazione potenziale" in quanto la superficie di estensione è compresa tra 0.1 ha e 1 ha: non è necessario dunque procedere ad un'ulteriore verifica.

Pertanto il volume da reperire risulta essere pari a 200.91 mc.

COMPARTO 5b

Lo stato pre intervento del comparto 5b è costituito da una superficie permeabile di 21567.87 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 15910.72 mq, una porzione di 5239.56 mq impermeabile e aree semipermeabili pari a 417.87 mq.

Si ottiene così:

W tot = 332.27 mc

nserire i dati esclusivamente nei campi cer	chiati)									Ш						-
0	fi - i - f ii i -		041507.07							4 - 4		4.	-100-4			
Super	ficie fondiaria	=	21'567.87	mq					superficie que mete				all'interno	aei nua	VO	
ANTE OPERAM							Scarico	acc	que mete	OHC	rie di pro	gen	10			
Superficie impermea	hile esistente	_	0.00	ma			inserire	il 10	00 % dell:	a sı	ınerficie	imn	ermeabile	Δ .		
Caponiole impormod		_	0.00	····q							•		to/betone			
	lmp°	=	0.00													
	·															
Superifice permea	bile esistente	=	21'567.87	mq			inserire	il 10	00 % dell	a sı	uperficie	peri	meabile (verde o	agricola)	
							e il 50%	de	lla superf	icie	di stabil	izza	to/betone	lla etc.		
	Per°	=	1.00							Н		Н				-
	Imp°+Per°	_	1.00				corretto	· ric	ulta pari	a 1		Н				-
	mip ii Gi		1.00				30110110		ana pari	۱ م		\Box				
POST OPERAM																
Superficie impermeab	ile di progetto	=	5'448.36	mq			inserire	il 10	00 % dell	a sı	perficie	imp	ermeabile	е		
							e il 50%	de	lla superf	icie	di stabil	izza	to/betone	lla etc.		
	lmp	=	0.25													
			101110 =0										,			
Superficie permea	abile progetto	=	16'119.52	mq							•		meabile (agricola)	-
	Per		0.75				e il 50%	de	lla superf	icie	di stabil	izza	to/betone	lla etc.		-
	Per	=	0.75					Н		Н		Н				+
	lmp+Per	=	1.00				corretto	: ris	ulta pari	a 1						
NDICI DI TRASFORMAZIONE DELL'ARE	A															
Superficie trasfor	mata/livellata	=	21'567.87	mq									non agric	ole		-
			1.00				di proge	tto.	Compre	se a	aree verd	ik				-
	'	=	1.00					Н		Н						
Superficie agric	ola inalterata	=	0.00	ma			inserire	la s	superficie	aar	icola di ı	prod	etto			
, ŭ									uperficie							
	P	=	0.00							Ш		Ш				
	I+P	-	1.00				corretto	· ric	ulta pari	a 1						-
		-	1.00				COTTOLLO	. 113	idita pari	u 1						
								Н		Н		\vdash				+
CALCOLO DEI COEFFICIENTI DI DEFLU	SSO ANTE C	PEI	RAM E POS	ТΟ	PER/	AM				Ш						
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$	0.9	х	0.00	+	0.2	х	1.00	=	0.20		φ°					
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	х	0.25	+	0.2	х	0.75	=	0.38		ф					
								П		П						
								П		П						
CALCOLO DEL VOLUME MINIMO DI INV								Н		Н		\vdash				-
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50	Х	3.38	-	15	Х	1.00	-	50		0.00		154.06	mc/ha	w	-
W = w x Superficie fondiaria (ha) =							154.06	х	21'568	:	10'000	=	332.27	mc	W	

Le linee guida del Piano Stralcio per il Rischio Idrogeologico forniscono una classificazione degli interventi di trasformazione delle superfici, che permette di definire soglie dimensionali in base alle quali applicare considerazioni differenziate in relazione all'effetto atteso dell'intervento.

La classificazione è riportata nella precedente tabella.

L'intervento in esame ricade nel caso degli interventi a "significativa impermeabilizzazione potenziale" in quanto la superficie di estensione è compresa tra 1 ha e 10 ha: è necessario dunque procedere ad un'ulteriore verifica.

E' stata quindi svolta la verifica della volumetria per piogge con tempo di ritorno pari a 30 anni e durata di due ore. Viene riportato di seguito il foglio di calcolo della verifica svolta.

Come si evince dall'immagine, con tale metodo di calcolo si ottiene un volume minore (325.02 mc) a W e pertanto il volume da reperire risulta essere confermato cautelativamente in **332.27 mc**.

VERIFICA DELLA VOLU	JMETRIA PEF	R PIOGGE	CON T	R 30 ANNI	E DURATA d 2	h
Da effettuarsi per casi di Su	uperficie fondiari	a > 1 ha				
Inserire dati esclusivamente	e nei campi cerc	hiati				
Superficie fondiaria	2.16	ha	superfici	ie totale dell'	intervento	
TR	30	anni	tempo d	i ritorno di rif	erimento	
а	48		inserire	parametro di	zona (vedi tabella)
n	0.30		inserire	parametro di	zona (vedi tabella)
tp	2.00	ore	durata d	i pioggia		
ф	0.38		coeff. di	deflusso do	oo la trasformazior	ne
h	59.09	mm	altezza	pioggia in tp		
Vp	1'274.55	mc	Volume	piovuto in tp		
Ve	480.29	mc	Volume	effluente in v	asca in tp	
Qu	21.57	l/sec	Portata	scaricabile c	lalla strozzatura ad	dottata
Vu	155.27	mc	Volume	scaricato da	ılla vasca nel ricett	ore in tp
Ve-Vu	325.02	mc	Volume	da laminare	per evento TR 30	d 2 ore
w	332.27	mc	Volume	di laminazio	ne (formula del w)	
	VERIFICATO					
	W FINALE da	adottare=		332.27	mc	
Per Tp>1h e TR 30 anni	RIMINI	CESENA	FORLI	RAVENNA		
а	51	51	48	51		
n	0.27	0.29	0.30	0.28		

COMPARTO 6a

Lo stato pre intervento del lotto privato è costituito da una superficie permeabile di 107805.68 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile pari a 54041.05 mq, una porzione di 53189.65 mq impermeabile e aree semipermeabili pari a 574.98 mq.

Si ottiene così:

W tot = 3573.15 mc

nserire i dati esclusivamente nei campi cer	chiati)															
Super	ficie fondiaria	=	107'805.68	mq									all'interno	del nuc	VO	
							scarico	acc	que mete	oric	he di pro	oget	tto			
NTE OPERAM																
Superficie impermea	bile esistente	=	0.00	mq									permeabile			
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	lmp°	=	0.00	_						Н						
Superifice permea	hile esistente	_	107'805 68	ma			incoriro	il 1	00 % dall	2 6	unerficie	ner	rmeabile (verde o	agricola)	-
Superince permea	blic coloterite	-	107 000.00	шч							•		ato/betone		agricola)	
	Per°	=	1.00				e ii 50%	ue	iia Superi	ICIE	ui Stabii	IZZ	ato/betone	ila etc.		-
	Imp°+Per°	=	1.00				corretto	: ris	sulta pari	a 1						
										Н		Н				-
POST OPERAM																-
Superficie impermeab	ile di progetto	=	53'477.14	mq			inserire	il 1	00 % dell	a s	uperficie	imp	permeabile	Э		
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	lmp	=	0.50													
Superficie permea	ahile progetto	_	54'328.54	ma			incarira	il 1	00 % dall	2 6	unarficia	ner	rmeabile (verde o	agricola)	-
Superiicie periire	ablie progetto	-	34 320.34	шч							•	•			agi icola)	
	Per	-	0.50				e II 50%	ae	iia superi	icie	di Stabii	IZZč	ato/betone	iia etc.		-
	1 01	-	0.50													
	lmp+Per	=	1.00				corretto	: ris	sulta pari	a 1						
	_															
NDICI DI TRASFORMAZIONE DELL'AREA								Ш		Ш						
Superficie trasfor	mata/livellata	=	107'805.68	mq									non agric	ole		
		=	1.00				di proge	tto.	Compre	se	aree ver	ll				-
		=	1.00													-
Superficie agric	ola inalterata	=	0.00	mq			inserire	la s	superficie	aq	ricola di	pro	getto			
·							(ovvero	la s	superficie	ag	ricola ina	alter	rata)			
	Р	=	0.00													
	I+P	_	1.00				corretto	· ric	sulta pari	2 1						-
	ITF	-	1.00				Corretto	. 118	suita pari	аі						-
										Н		Н				+
CALCOLO DEI COEFFICIENTI DI DEFLU	SSO ANTE C	PE	RAM E POS	ТО	PER/	ΔM										
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$	0.9	х	0.00	+	0.2	х	1.00	=	0.20		φ°					
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9	х	0.50	+	0.2	х	0.50	_	0.55		φ	П				
Ψ 0.0 /	0.0	i.	5.00	Ė	5.2		0.50		0.50	Н	Ψ	Н				
										Н		Н				
CALCOLO DEL VOLUME MINIMO DI INV	ASO											Ш				
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50	х	6.93	-	15	х	1.00	-	50	х	0.00	=	331.44	mc/ha	w	

Le linee guida del Piano Stralcio per il Rischio Idrogeologico forniscono una classificazione degli interventi di trasformazione delle superfici, che permette di definire soglie dimensionali in base alle quali applicare considerazioni differenziate in relazione all'effetto atteso dell'intervento.

La classificazione è riportata nella precedente tabella.

L'intervento in esame ricade nel caso degli interventi a "marcata impermeabilizzazione potenziale" in quanto la superficie di estensione è maggiore di 10 ha: è necessario dunque procedere ad un'ulteriore verifica.

E' stata quindi svolta la verifica della volumetria per piogge con tempo di ritorno pari a 30 anni e durata di due ore. Viene riportato di seguito il foglio di calcolo della verifica svolta.

Come si evince dall'immagine, con tale metodo di calcolo si ottiene un volume minore (2710.08 mc) a W e pertanto il volume da reperire risulta essere confermato cautelativamente in **3573.15 mc**.

VERIFICA DELLA VOLU Da effettuarsi per casi di Su						
•	•					
nserire dati esclusivamente	e nei campi cerc	riiati				
Superficie fondiaria	10.78	ha	superfici	e totale dell'i	intervento	
TR	30	anni	tempo d	i ritorno di rif	erimento	
a	48		inserire	parametro di	zona (vedi tabella)
n	0.30		inserire	parametro di	zona (vedi tabella)
tp	2.00	ore	durata d	i pioggia		
ф	0.55		coeff. di	deflusso dop	oo la trasformazion	ne
h	59.09	mm	altezza	pioggia in tp		
Vp	6'370.77	mc	Volume	piovuto in tp		
Ve	3'486.31	mc	Volume	effluente in v	asca in tp	
Qu	107.81	l/sec	Portata	scaricabile d	alla strozzatura a	dottata
Vu	776.23	mc	Volume	scaricato da	lla vasca nel ricett	ore in tp
Ve-Vu	2'710.08	mc	Volume	da laminare	per evento TR 30	d 2 ore
W	3'573.15	mc	Volume	di laminazio	ne (formula del w)	
	VEDIEIOATO					
	VERIFICATO					
	W FINALE da	adottare=		3'573.15	mc	
Per Tp>1h e TR 30 anni	RIMINI	CESENA	FORLI	RAVENNA		
a		51	48	51		
n	0.27	0.29	0.30	0.28		

COMPARTO 6b

Lo stato pre intervento del lotto privato è costituito da una superficie permeabile di 37034.35 mq, corrispondente alla totalità del lotto in esame e da una superficie impermeabile nulla e con assenza di superfici semipermeabili; invece, nello stato post intervento si individua una superficie permeabile nulla, una porzione di 37034.35 mq impermeabile e aree semipermeabili assenti.

Di fatto, coincide esattamente con tutte le coperture dei fabbricati interni al momento ipotizzati.

Si ottiene così:

W tot = 3284.50 mc

nserire i dati esclusivamente nei campi cer	chiati)															_
												Щ				
Super	ficie fondiaria	=	37'034.35	mq		_							all'interno	del nuo	VO	
ANTE OPERAM						-	scarico	acc	que mete	oric	ne ai pro	oget	tto			-
Superficie impermeal	hilo opiotopto		0.00	ma			incoriro	11.11	00.0/ 401	0.01	morficio	imr	permeabile			+
Superficie impermea	Dile esisterite	-	0.00	шч							•		ato/betone			+
	lmp°	=	0.00				G II 30 70	ue	iia superi		ui stabii	1220	ato/ Detorie	iia etc.		
Superifice permea	bile esistente	=	37'034.35	mq			inserire	il 10	00 % dell	a sı	uperficie	per	meabile (verde o	agricola)	
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	Per°	=	1.00													
	Imp°+Per°		1.00				corretto	· rio	sulta pari	0.1		Н				-
	mip +rer	=	1.00				COTTELLO	. IIS	uila pall	d I		\vdash				+
POST OPERAM								Н				П				\top
Superficie impermeabi	ile di progetto	=	37'034.35	ma			inserire	il 10	00 % dell	a sı	uperficie	imr	permeabile			
	p g										•		ato/betone			
	lmp	=	1.00				G II 30 70	ue	iia superi		ui stabii	1220	ato/ Detorie	iia etc.		
Superficie permea	abile progetto	=	0.00	mq			inserire	il 10	00 % dell	a sı	uperficie	per	meabile (verde o	agricola)	_
							e il 50%	de	lla superf	icie	di stabil	izza	ato/betone	lla etc.		
	Per	=	0.00							Н		Н				-
	Imp+Per	=	1.00			-	corretto	· ris	sulta pari	a 1		Н				+
							00.10110		runa pan	<u>. </u>						
NDICI DI TRASFORMAZIONE DELL'ARE	A															
Superficie trasfor	mata/livellata	=	37'034.35	mq									non agric	ole		
							di proge	tto.	Compre	se a	aree verd	ib				
	I	=	1.00													-
Superficie agric	ola inaltarata	_	0.00	ma			incoriro	la c	superficie	201	ricola di	prod	notto			+
Superficie agric	ola iriailerala	=	0.00	mq		-			superficie							+
	Р	=	0.00				(0110.0		опротного	L.g.			u.u.j			
	I+P	=	1.00			_	corretto	: ris	ulta pari	a 1		\vdash				+
								Н				H				-
CALCOLO DEI COEFFICIENTI DI DEFLUS	SSO ANTE C	PEI	RAM E POS	тο	PER/	AM										
$\phi^{\circ} = 0.9 \text{ x Imp}^{\circ} + 0.2 \text{ x Per}^{\circ} =$	0.9		0.00		0.2		1.00	_	0.20		φ°	П				†
$\phi = 0.9 \text{ x Imp} + 0.2 \text{ x Per} =$	0.9		1.00		0.2		0.00		0.90		φ	П				
ψ = 0.3 λ πηρ + 0,2 λ Pel =	0.9	^	1.00		0.2	^	0.00	=	0.90	H	Ψ	H				+
								Н		Н		Н				+
CALCOLO DEL VOLUME MINIMO DI INVA	ASO							Ш				Ш				
$w=w^{\circ} (f/f^{\circ})^{(1/(1-n))} - 15 I - w^{\circ}P =$	50	х	18.04	-	15	х	1.00	-	50	x	0.00	=	886.88	mc/ha	w	
							886.88		37'034						w	

Le linee guida del Piano Stralcio per il Rischio Idrogeologico forniscono una classificazione degli interventi di trasformazione delle superfici, che permette di definire soglie dimensionali in base alle quali applicare considerazioni differenziate in relazione all'effetto atteso dell'intervento.

La classificazione è riportata nella seguente tabella.

L'intervento in esame ricade nel caso degli interventi a "significativa impermeabilizzazione potenziale" in quanto la superficie di estensione è compresa tra 1 ha e 10 ha: è necessario dunque procedere ad un'ulteriore verifica.

E' stata quindi svolta la verifica della volumetria per piogge con tempo di ritorno pari a 30 anni e durata di due ore. Viene riportato di seguito il foglio di calcolo della verifica svolta.

Come si evince dall'immagine, con tale metodo di calcolo si ottiene un volume minore (1703.07 mc) a W e pertanto il volume da reperire risulta essere confermato cautelativamente in **3284.50 mc**.

VERIFICA DELLA VOLU	JMETRIA PER	RPIOGGE	CON T	R 30 ANNI	E DURATA d 2	h
Da effettuarsi per casi di Su	uperficie fondiari	a > 1 ha				
Inserire dati esclusivamente	e nei campi cerc	hiati				
Superficie fondiaria	3.70	ha	superfici	e totale dell'	intervento	
TR	30	anni		i ritorno di rif		
а	48				zona (vedi tabella	•
n					zona (vedi tabella)
tp	2.00	ore	durata d	i pioggia		
ф	0.90		coeff. di	deflusso do	oo la trasformazior	ne
h				pioggia in tp		
Vp	2'188.54	mc		piovuto in tp		
Ve	1'969.69	mc	Volume	effluente in v	asca in tp	
Qu					lalla strozzatura ad	
Vu	266.62	mc	Volume	scaricato da	ılla vasca nel ricett	ore in tp
Ve-Vu	1'703.07	mc	Volume	da laminare	per evento TR 30	d 2 ore
W	3'284.50	mc	Volume	di laminazio	ne (formula del w)	
	VERIFICATO			ı		
	W FINALE da	adottare=		3'284.50	mc	
Per Tp>1h e TR 30 anni		CESENA	FORLI	RAVENNA		
а	51	51				
n	0.27	0.29	0.30	0.28		

3. REPERIMENTO DEI VOLUMI PER L'INVARIANZA IDRAULICA

Nel presente paragrafo si illustrano le modalità con le quali verranno reperiti i volumi atti a garantire il rispetto dell'invarianza idraulica. L'approccio rimane il medesimo del capitolo precedente; infatti, i comparti verranno gestiti ed illustrati ognuno indipendentemente dall'altro.

Sub-Comparto 1 (Scarico S1 sullo scolo cons. Fossatone 3^ Ramo)

Per quanto concerne il sub-comparto pubblico 1, per reperire i volumi invarianti verrà realizzato un fosso a nord della pista ciclabile. Il fosso di nuova realizzazione avrà una larghezza al fondo di 30 cm, una larghezza in sommità di 110 cm, un'altezza utile di 50 cm e una lunghezza complessiva di circa 85 metri. Il volume, come da regolamento di polizia idraulica del Consorzio di Bonifica della Romagna (da Direttiva Tecnica del PSRI) verrà conteggiato all'80 %; quindi il volume reperito risulta essere pari a:

 $V_{fosso} = [(0.3 \text{ m} + 1.1 \text{m}) / 2] \times 0.5 \text{ m} \times 85 \text{ m} \times 0.8 = 23.8 \text{ mc} > 17.79 \text{ mc}$

Sub-Comparto 2 (Scarico S2 sullo scolo cons. Fossatone Affluente 3^ Ramo)

All'interno del verde pubblico, appositamente previsto sul fronte nord del comparto, verrà realizzata una depressione morfologica (con pendenza scarpate molto dolce, max 7%) atta ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente.

Ipotizzando una superficie al fondo (quota media pari a [25.80 m slrif]) di circa 2786.5 mq e lo speco di massimo invaso (quota di ciglio sommitale [26.30 m slrif] e quota di massimo invaso idrico [26.10 m slrif], considerando un franco di 20 cm) di circa 4010.0 mq, si ha che con un tirante idrico massimo pari a 30 centimetri il volume utile è così stimabile:

$$V_{dep}$$
 = (2786.5 mq + 4010.0 mq) / 2) * 0.30 m = 1019.5 mc >> 696.89 mc

Già la depressione morfologica assolve abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti), qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema.

Sub-Comparto 3 (Scarico S3 sullo scolo cons. Fossatone Affluente 3^ Ramo)

All'interno del verde pubblico, appositamente previsto sul fronte nord del comparto, verranno realizzate due depressioni morfologiche (con pendenza scarpate molto dolce, max 7%) atte ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente.

DEP 3.1: Ipotizzando una superficie al fondo (quota media pari a [25.86 m slrif]) di circa 269.6 mq e lo speco di massimo invaso (quota di ciglio sommitale [26.36 m slrif] e quota di massimo invaso idrico [26.16 m slrif], considerando un franco di 20 cm) di circa 729.6 mq, si ha che con un tirante idrico massimo pari a 30 centimetri il volume utile è così stimabile:

$$V_{dep 3.1} = (269.6 \text{ mq} + 729.6 \text{ mq}) / 2) * 0.30 \text{ m} = 149.8 \text{ mc}$$

DEP 3.2: Ipotizzando una superficie al fondo (quota media pari a [25.86 m slrif]) di circa 52.8 mq e lo speco di massimo invaso (quota di ciglio sommitale [26.36 m slrif] e quota di massimo invaso idrico [26.16 m slrif], considerando un franco di 20 cm) di circa 206.7 mq, si ha che con un tirante idrico massimo pari a 30 centimetri il volume utile è così stimabile:

$$V_{dep 3.2} = (52.8 \text{ mq} + 206.7 \text{ mq}) / 2) * 0.30 \text{ m} = 38.8 \text{ mc}$$

In conclusione il volume reperito internamente al sub-comparto 3 grazie alle n. 2 depressioni morfologiche compartecipi risulta essere pari a:

$$V_{dep} = V_{dep3.1} + V_{dep3.2} = 149.8 \text{ mc} + 38.8 \text{ mc} = 188.6 > 137.07 \text{ mc}$$

Già le n. 2 depressioni morfologiche assolvono abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti), qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema.

Sub-Comparto 4 (Scarico diretto su fosso stradale tombinato di via del Paganello)

All'interno del verde pubblico, appositamente previsto sul fronte nord del comparto tra i previsti stalli auto su via del Paganello ed il confine privato del nuovo lotto, verrà realizzata una microdepressione morfologica (con pendenza scarpate molto dolce, max 7%) atta ad invasare in caso di necessità il modesto volume derivante dalla formula del W stimato nel paragrafo precedente.

Ipotizzando una superficie al fondo (quota media pari a [26.27 m slrif]) di circa 34.2 mg ed in sommità, (quota di ciglio sommitale [26.40 m slrif]) di circa 252.2 mg, si ha che con un tirante idrico massimo pari a 13 centimetri il volume utile è così stimabile:

$$V_{dep}$$
 = (34.2 mq + 252.2 mq) / 2) * 0.13 m = 18.6 mc > 16.47 mc

Sub-Comparto 5a (Scarico S5a sullo scolo cons. Fossatone Affluente 3^ Ramo)

All'interno del verde privato, appositamente previsto sul fronte sud del comparto, verrà realizzata una depressione morfologica (con pendenza scarpate dolce) atta ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente.

Ipotizzando una superficie al fondo (quota media pari a [25.75 m slrif]) di circa 775.3 mq e lo speco di massimo invaso (quota di ciglio sommitale [26.25 m slrif] e quota di massimo invaso idrico [26.15 m slrif], considerando un franco di 20 cm) di circa 865.6 mq, si ha che con un tirante idrico massimo pari a 30 centimetri il volume utile è così stimabile:

$$V_{dep}$$
 = (775.3 mq + 865.6 mq) / 2) * 0.30 m = 246.1 mc >> 200.91 mc

Già la depressione morfologica assolve abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti) privata sottesa allo scarico, qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema.

Sub-Comparto 5b (Scarico S5b sullo scolo cons. Fossatone Ausa Vecchia)

All'interno del verde privato, appositamente previsto sul fronte nord del comparto, verrà realizzata una depressione morfologica (con pendenza scarpate dolce) atta ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente.

Ipotizzando una superficie al fondo (quota media pari a [25.60 m slrif]) di circa 4467 mq e lo speco di massimo invaso (quota di ciglio sommitale [26.10 m slrif] e quota di massimo invaso idrico [25.90 m slrif], considerando un franco di 20 cm) di circa 4669 mq, si ha che con un tirante idrico massimo pari a 30 centimetri il volume utile è così stimabile:

$$V_{dep} = (4467 \text{ mq} + 4669 \text{ mq}) / 2) * 0.30 \text{ m} = 1370.4 \text{ mc} >> 332.27 \text{ mc}$$

Già la depressione morfologica assolve abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti) privata sottesa allo scarico, qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema.

Inoltre, per il presente sub-comparto vale la pena sottolineare fin da ora che tale margine esuberante nel reperimento dei volumi invarianti (oltre 1000 mc di eccedenza), oltre a garantire progettualmente un ottimale grado di sicurezza idraulica alla zona dell'ingresso al lotto fondiario di proprietà, potrà in futuro potenzialmente essere "utilizzato" nel caso dovessero rendersi necessari nuovi interventi impermeabilizzanti (edifici, manufatti tecnici, parcheggi) proprio nell'abbondante zona a verde privato prevista dal presente progetto nell'area contermine all'ingresso al lotto e alla strada con bretella di ritorno da/per il grande parcheggio pubblico (vedasi il sub-Comparto 2).

Sub-Comparto 6a (Scarico S6a sullo scolo cons. Fossatone Ausa Vecchia)

All'interno del verde privato, appositamente previsto nel comparto sia sul fronte sud che sul fronte nord del lotto, verranno realizzate n. 2 depressioni morfologiche (con pendenza scarpate dolce) atte ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente. Tali depressioni saranno opportunamente collegate, tramite caditoie sul fondo vasca, alle linee fognarie interne del lotto per le acque meteoriche di dilavamento dei piazzali.

DEP 6.1: Ipotizzando una superficie al fondo (quota media pari a [25.20 m slrif]) di circa 5250 mq e lo speco di massimo invaso (quota di ciglio sommitale [25.80 m slrif] e quota di massimo invaso idrico [25.70 m slrif], considerando un franco di 10 cm) di circa 6075 mq, si ha che con un tirante idrico massimo pari a 50 centimetri il volume utile è così stimabile:

 $V_{dep 6.1} = (5250 \text{ mq} + 6075 \text{ mq}) / 2) * 0.50 \text{ m} = 2831.2 \text{ mc}$

DEP 6.2: Ipotizzando una superficie al fondo (quota media pari a [25.20 m slrif]) di circa 1611 mq e lo speco di massimo invaso (quota di ciglio sommitale [25.80 m slrif] e quota di massimo invaso idrico [25.70 m slrif], considerando un franco di 10 cm) di circa 1779 mq, si ha che con un tirante idrico massimo pari a 50 centimetri il volume utile è così stimabile:

$$V_{dep 6.2} = (1611 \text{ mq} + 1779 \text{ mq}) / 2) * 0.50 \text{ m} = 847.5 \text{ mc}$$

In conclusione, il volume reperito internamente al sub-comparto 6a - grazie alle depressioni compartecipi - risulta essere pari a:

$$V = V_{dep6.1} + V_{dep6.2} = 2831.2 \text{ mc} + 847.5 \text{ mc} = 3678.7 \text{ mc} >> 3573.15 \text{ mc}$$

Già le n. 2 depressioni morfologiche assolvono abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti) privata sottesa allo scarico, qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema

Sub-Comparto 6b (Scarico S6b sullo scolo cons. Fossatone 1^ Ramo)

All'interno del verde privato, appositamente previsto sul fronte ovest del comparto, verrà realizzata una depressione morfologica (con pendenza scarpate abbastanza dolce) atta ad invasare in caso di necessità un ingente volume derivante dalla formula del W stimato nel paragrafo precedente.

Tale depressione – ubicata vicino allo scarico strozzato, e dunque in posizione idraulica ottimale - sarà opportunamente collegata, tramite caditoie sul fondo vasca, alla dorsale fognaria interna del lotto per le acque meteoriche pluviali delle coperture.

Ipotizzando una superficie al fondo (quota media pari a [24.90 m slrif]) di circa 4074 mq e lo speco di massimo invaso (quota di ciglio sommitale [25.80 m slrif] e quota di massimo invaso idrico [25.70 m slrif], considerando un franco di 10 cm) di circa 4418 mq, si ha che con un tirante idrico massimo pari a 75 centimetri il volume utile è così stimabile:

$$V_{dep}$$
 = (4074 mq + 4418 mq) / 2) * 0.80 m = 3396.8 mc >> 3284.5 mc

Già la depressione morfologica assolve abbondantemente alle esigenze normative di volume invariante; a ciò si aggiunga il contributo (all'80%) dato dalla geometria fognaria bianca (pozzetti e condotti) privata sottesa allo scarico, qui non stimata analiticamente in quanto non necessaria, ma comunque utile a garantire ulteriore grado di sicurezza al sistema.

Si sottolinea che, in generale, per quanto concerne le depressioni morfologiche private, il dimensionamento riportato nella presente relazione risulta indicativo ed atto a dimostrare che le volumetrie previste dalla normativa sono adeguatamente reperibili all'interno della superficie fondiaria, senza necessitare di fruire, ancorché parzialmente, delle volumetrie dei dispositivi di laminazione in area pubblica.

In sede di richiesta di specifico PdC nel lotto fondiario, verranno dimensionati con maggior dettaglio a livello esecutivo, sia in termini planimetrici che altimetrici, anche in relazione alle quote di scorrimento delle fognature bianche interne, gli esatti dispositivi invarianti di laminazione, tenendo anche conto del contributo fognario (80%).

5. VERIFICA DELL'OFFICIOSITÀ IDRAULICA DELLA FOGNATURA BIANCA PUBBLICA

La rete di drenaggio pubblica delle acque bianche a servizio di ogni sub-comparto (1,2,3,4) deve essere in grado di smaltire le acque meteoriche provenienti dai comparti pubblici.

Verranno quindi verificate le condotte terminali del sub-comparto 2 e del sub-comparto 3. Non necessita, invece, alcuna calcolazione idrologica-idraulica per i sub-comparti 1 e 4 (tra l'altro, con superfici impermeabilizzate davvero assai modeste): nel primo caso è prevista la sola realizzazione di un fossetto laterale alla porzione più orientale della pista ciclabile, senza l'implementazione di alcuna tubazione fognaria, mentre nel secondo caso le caditoie a servizio degli stalli parcheggio direttamente afferenti a via del Paganello e le caditoie al fondo della relativa depressione morfologica saranno direttamente collegate alla tombinatura DN400 del fosso stradale della medesima arteria stradale.

La dorsale fognaria principale prevista nel comparto 2 è in sempre in CLS DN 800 e la pendenza di posa prevista è dello 0.1%.

La condotta è stata dimensionata assumendo come sollecitazione di progetto una precipitazione avente tempo di ritorno di 30 anni; nelle Linee Guida del Comune di Forlì viene indicato di dimensionare la fognatura bianca considerando un'altezza di pioggia calcolata con il metodo di Gumbel, per un tempo di ritorno di 25 anni. Disponendo dei coefficienti a ed n della curva di possibilità pluviometrica per precipitazioni di durata inferiore all'ora e Tr = 30 anni (fonte: Regolamento di Polizia Idraulica del Consorzio di Bonifica della Romagna) per l'area di Forlì, si è optato per dimensionare le fogne bianche con un grado di sicurezza leggermente superiore rispetto a quanto richiesto solitamente dalle Linee Guida comunali e/o di HERA:

Con i quali calcolare l'altezza e l'intensità di pioggia di riferimento di durata d:

$$h(d) = a^* d^n$$
 - $i(d) = a^* d^{n-1}$

Il metodo cinematico ipotizza che, per un dato tempo di ritorno, la portata massima sia quella di durata parti al tempo di corrivazione della rete (t_c):

Q max =
$$\phi$$
 A* i(t_c)

con ϕ coefficiente di deflusso del bacino tributario.

Tale coefficiente è una media pesata sulla tipologia delle aree del bacino secondo la loro permeabilità. Al Paragrafo 2 si è già stato stimato un valore medio di ϕ pari a 0.37, per A = 48054.51 mq.

Indicativamente, considerando sia i tempi di accesso alla rete che quelli di transito al suo interno (percorso di oltre 260 metri), si assume un tempo di corrivazione pari a circa 20 minuti.

Si ottiene quindi:

$$i = 47 * 0.33^{-0.52} = 83.21 \text{ mm/h}$$

Da cui:

Q max =
$$\phi$$
 A* i(t_c) = 411 l/s

Il ramo terminale è stato verificato idraulicamente controllando che la portata idrologica (Q max) fosse inferiore all'officiosità idraulica del condotto (i.e. massima portata smaltibile a bocca piena).

Questa seconda grandezza viene così stimata:

Q unif = (formula di moto uniforme di Chezy) = $C^*\Omega^*(R^* p)^{0.5}$

Essendo:

- Ω : sezione a bocca piena della sezione in metri quadrati

- R : raggio idraulico a bocca piena in metri

- p : pendenza del ramo

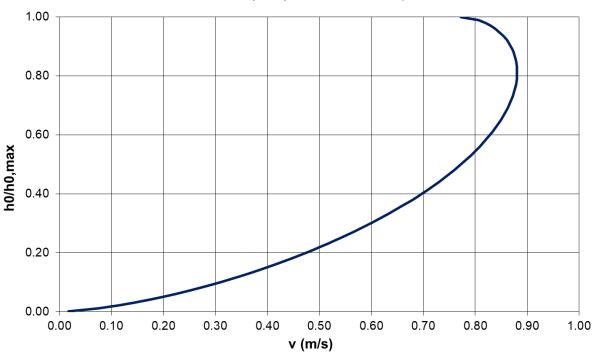
- C : coefficiente di resistenza adimensionale (con espressione di Gauckler-Strickler)

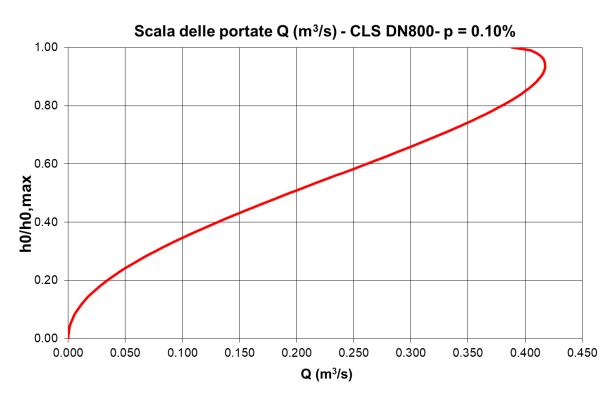
 $C = c*R^{(1/6)}$ (con c=90-100 per materiali plastici, c=65-70 per il cls)

La verifica è positiva, come si vede dai calcoli riportati di seguito.

Condotta terminale: CLS DN 800, p = 0.10%

Q unif = 418 l/s PORTATA MASSIMA IN CONDIZIONI DI MOTO UNIFORME


A = 15898 mg


 ϕ medio = 0.37

Q max = 411 l/s PORTATA METEORICA MASSIMA DI RIFERIMENTO

h/D = 89 % GRADO DI RIEMPIMENTO MASSIMO DEL CONDOTTO

La dorsale fognaria principale (finale) pubblica prevista nel comparto 3 è in sempre in CLS DN 400 e la pendenza di posa prevista è dello 0.2%.

La condotta è stata dimensionata assumendo come sollecitazione di progetto una precipitazione avente tempo di ritorno di 30 anni; nelle Linee Guida del Comune di Forlì viene indicato di dimensionare la fognatura bianca considerando un'altezza di pioggia calcolata con il metodo di Gumbel, per un tempo di ritorno di 25 anni.

Disponendo dei coefficienti a ed n della curva di possibilità pluviometrica per precipitazioni di durata inferiore all'ora e Tr = 30 anni (fonte: Regolamento di Polizia Idraulica del Consorzio di Bonifica della Romagna) per l'area di Forlì, si è optato per dimensionare le fogne bianche con un grado di sicurezza leggermente superiore rispetto a quanto richiesto dalle Linee Guida comunali:

Con i quali calcolare l'altezza e l'intensità di pioggia di riferimento di durata d:

$$h(d) = a^* d^n$$
 - $i(d) = a^* d^{n-1}$

Il metodo cinematico ipotizza che, per un dato tempo di ritorno, la portata massima sia quella di durata parti al tempo di corrivazione della rete (t_c):

Q max =
$$\phi$$
 A* i(t_c)

con ϕ coefficiente di deflusso del bacino tributario.

Tale coefficiente è una media pesata sulla tipologia delle aree del bacino secondo la loro permeabilità. Al Paragrafo 2 si è già stato stimato un valore medio di ϕ pari a 0.42, per A = 7248.8 mq.

Indicativamente, considerando sia i tempi di accesso alla rete che quelli di transito al suo interno (percorso di oltre 130 metri), si assume un tempo di corrivazione pari a circa 13 minuti.

Si ottiene quindi:

$$i = 47 * 0.16^{-0.52} = 104.11 \text{ mm/h}$$

Da cui:

Q max =
$$\phi$$
 A* i(t_c) = 88 l/s

Il ramo terminale è stato verificato idraulicamente controllando che la portata idrologica (Q max) fosse inferiore all'officiosità idraulica del condotto (i.e. massima portata smaltibile a bocca piena).

Questa seconda grandezza viene così stimata:

Q unif = (formula di moto uniforme di Chezy) = $C^*\Omega^*(R^* p)^{0.5}$

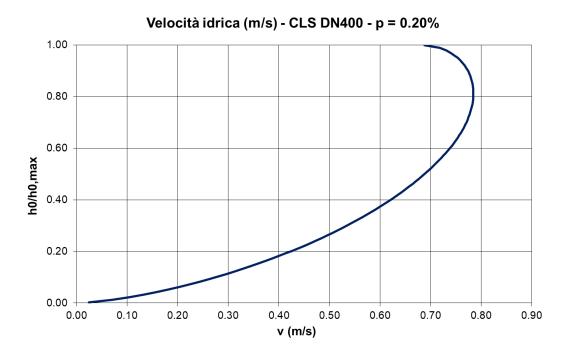
Essendo:

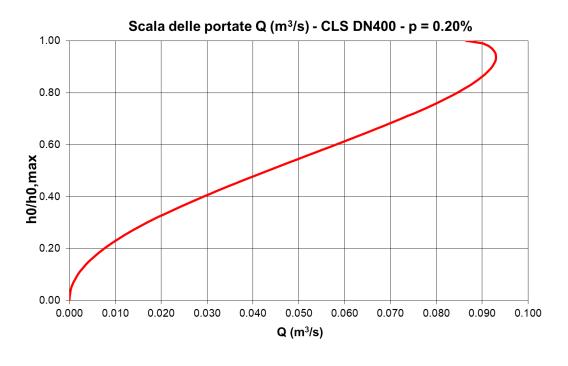
- Ω : sezione a bocca piena della sezione in metri quadrati
- R : raggio idraulico a bocca piena in metri
- p : pendenza del ramo
- C: coefficiente di resistenza adimensionale (con espressione di Gauckler-Strickler)

 $C = c*R^{(1/6)}$ (con c=90-100 per materiali plastici, c=65-70 per il cls)

La verifica è positiva, come si vede dai calcoli riportati di seguito.

Condotta terminale: CLS DN400, p = 0.20%


Q unif = 93 l/s PORTATA MASSIMA IN CONDIZIONI DI MOTO UNIFORME


A = 15898 mq

 ϕ medio = 0.42

Q max = 88 l/s PORTATA METEORICA MASSIMA DI RIFERIMENTO

h/D = 84% GRADO DI RIEMPIMENTO MASSIMO DEL CONDOTTO

6. VERIFICA IDRAULICA DELLA DIMENSIONE DELLE STROZZATURE FINALI

In ultimo, resta solamente da verificare l'efficacia idraulica delle tubazioni terminali, aventi la funzione di "strozzature limitatrici di portata" in uscita verso i canali consorziali.

L'obiettivo progettuale è di limitare il coefficiente udometrico post intervento delle aree passate da permeabili ad impermeabili a 10 l/s*ha, pari cioè a quello per aree agricole pre-intervento urbanistico stabilito dal Consorzio di Bonifica della Romagna competente per i territori NO della pianura romagnola. Per le aree già impermeabilizzate, se presenti, si considera un coefficiente udometrico cautelativo pari a 90 l/s*ha, valore suggerito dal Consorzio stesso.

<u>Si sottolinea che il dimensionamento delle strozzature risulta indicativo, in quanto in sede di ogni specifico PDC verranno dimensionati con maggior dettaglio.</u> Si riportano di seguito i calcoli svolti per ciascun sub comparto.

SUB-COMPARTO 1

Per tale sub-comparto non si prevede il dimensionamento della strozzatura in quanto i volumi verranno reperiti in un fosso a lato della pista ciclabile con scarico diretto nello scolo Consorziale Fossatone 3° ramo. Quindi, come previsto dalla Direttiva Tecnica del Piano Stralcio per il rischio idrogeologico, non è prevista la realizzazione della strozzatura per le opere in linea, in primis quelle viabili, ma solamente il reperimento dei volumi invarianti per l'accumulo temporaneo delle acque, per i quali sono sfruttabili i fossi di guardia contigui.

SUB-COMPARTO 2

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 48.05 \text{ I/s}$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 130 cm, sarebbe necessario un diametro di circa 142 mm; tuttavia, il diametro minimo funzionale previsto dal Consorzio di Bonifica competente territorialmente è un **DN125 PVC (diametro interno 117 mm)**, che consentirebbe il passaggio di una portata pari a:

Q uscente = 32.59 l/s.

DIMENSIONAMENTO STROZZATURA															
Portata amm.le (Qagr.=10 l/sec/ha*															
Perm _o +90l/sec/ha*lmp _o)	48.05	I/	/sec	þ	oortata	am	missi	bile	effl	uente	al ı	ricettore			
Battente massimo h	1.30	n	m								•	ilcolato rozzatui	licitament	te in rel	azione)
DN max condotta di scarico	142.10	n	nm												
Si adotta condotta DN	117.00	n	nm									,	e deve ess e DN 125	ere infe	riore
Portata uscente con la condotta adottata	32.59		/sec				. 5. 00			ω. <i>τ</i> 111		- CONTEN	2120		

Per stimare la portata defluente dalla strozzatura, si possono usare diverse formule, dipendenti dalle modalità idrauliche di funzionamento nel condotto e quindi dalle condizioni al contorno.

In particolare, ipotizzando (<u>molto cautelativamente</u>) un funzionamento a battente con tratto breve e sbocco libero, la portata è calcolabile mediante la seguente formula:

 $Q = \mu A (2 g h)^{0.5}$

Con:

Q portata,

 $\mu = 0.6$

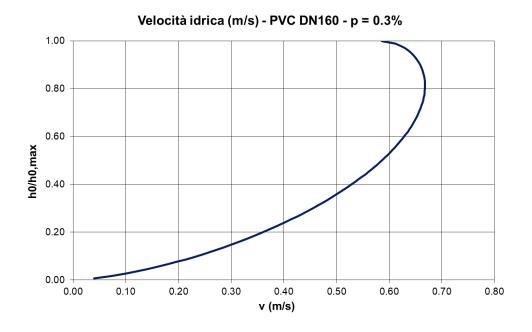
h = battente.

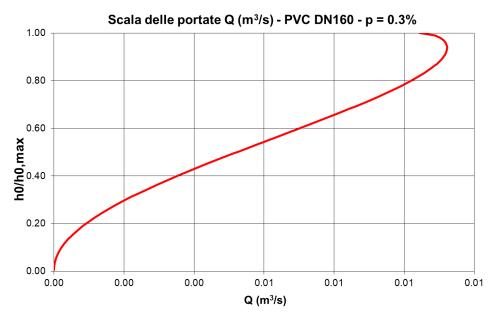
mu = 0,6				Diame	tro tubo	di scarico	(mm)			
battente	80	100	120	150	160	180	200	250	296	315
h (ml)				ро	rtata deflu	ente in I/s	ec			
0.2	5.97	9.33	13.44	20.99	23.88	30.23	37.32	58.31	81.75	92.58
0.3	7.31	11.43	16.45	25.71	29.25	37.02	45.71	71.42	100.12	113.38
0.4	8.44	13.19	19.00	29.69	33.78	42.75	52.78	82.47	115.61	130.92
0.5	9.44	14.75	21.24	33.19	37.77	47.80	59.01	92.20	129.25	146.38
0.6	10.34	16.16	23.27	36.36	41.37	52.36	64.64	101.00	141.59	160.35
0.7	11.17	17.45	25.14	39.27	44.68	56.55	69.82	109.09	152.93	173.20
0.8	11.94	18.66	26.87	41.99	47.77	60.46	74.64	116.63	163.49	185.15
0.9	12.67	19.79	28.50	44.53	50.67	64.13	79.17	123.70	173.41	196.39
1.0	13.35	20.86	30.04	46.94	53.41	67.59	83.45	130.39	182.79	207.01
1.1	14.00	21.88	31.51	49.23	56.02	70.89	87.52	136.76	191.71	217.11
1.2	14.63	22.85	32.91	51.42	58.51	74.05	91.42	142.84	200.24	226.77
1.25	14.93	23.33	33.59	52.48	59.71	75.57	93.30	145.78	204.37	231.44
1.3	15.22	23.79	34.25	3.52	60.89	77.07	95.15	148.67	208.41	236.03
1.4	15.80	24.69	35.55	55.54	63.19	79.98	98.74	154.28	216.28	244.94
1.5	16.35	25.55	36.79	57.49	65.41	82.79	102.21	159.70	223.87	253.53
1.6	16.89	26.39	38.00	59.38	67.56	85.50	105.56	164.93	231.21	261.85
1.7	17.41	27.20	39.17	61.20	69.64	88.13	108.81	170.01	238.33	269.91
1.8	17.91	27.99	40.31	62.98	71.65	90.69	111.96	174.94	245.24	277.73
1.9	18.40	28.76	41.41	64.70	73.62	93.17	115.03	179.73	251.96	285.34
2.00	18.88	29.50	42.49	66.38	75.53	95.59	118.02	184.40	258.50	292.76
2.1	19.35	30.23	43.54	68.02	77.40	97.95	120.93	188.96	264.89	299.99
2.2	19.80	30.94	44.56	69.62	79.22	100.26	123.78	193.40	271.12	307.04

Il diametro commerciale immediatamente superiore a quello succitato è il DN160 PVC (diametro interno pari a 150.6 mm), per il quale si ha una portata di poco maggiore alla massima ammissibile: con un battente di 130 cm, il DN160 consente infatti il deflusso di 54.00 l/s.

Si sottolinea che il funzionamento a battente si adatta bene ai tratti brevi per i quali si instaura un funzionamento a battente e a sbocco libero. Nei tratti di lunghezza medio-lunga, come nel caso qui esaminato (lunghezza della strozzatura di 31.00 m circa) è più plausibile ipotizzare l'instaurarsi (dopo un transitorio) di un funzionamento in condizioni di moto uniforme.

Tra l'altro, anche la condizione di sbocco libero nel canale è assai ipotetica, in quanto lo scarico è posto poco più in alto del fondo del canale e in occasione di eventi pluviometrici molto importanti è difficile pensare che l'alveo possa presentare livelli idrici contestuali più bassi dello scorrimento della strozzatura in uscita!


La portata massima in moto uniforme può essere calcolata applicando la formula di Chézy:


Qunif =
$$ks \times A \times (R \times i)^{0.5}$$

con ks il coefficiente di scabrezza di Gauckler-Strickler, A l'area bagnata della condotta, R il raggio idraulico (pari a D/4 per le condotte circolari) e i la pendenza di posa della condotta.

La portata massima a bocca piena smaltibile dalla condotta in PVC DN160 (diametro interno 150.6 mm) avente pendenza di posa pari allo 0.30%, calcolata in condizioni di moto uniforme considerando un coefficiente di scabrezza di Manning di 0.0105 s/m^{1/3}, è pari a 11 l/s, quindi una portata notevolmente inferiore rispetto a quella massima ammissibile.

Le figure di seguito rappresentano rispettivamente la scala della velocità e delle portate per la condotta in PVC DN160 e pendenza 0.30%.

In conclusione, la portata realmente smaltibile dal DN160 PVC sarà ricompresa tra 11 l/s e 54 l/s, con valore molto più vicino a 11 l/s che a 54 l/s. Quindi, con tale condotto, sarà sicuramente garantita la portata limite inferiore ai 48 l/s previsti dalla normativa.

SUB-COMPARTO 3

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 7.25 I/s$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 90 cm, sarebbe necessario un diametro di circa 60 mm; tuttavia, il diametro minimo funzionale previsto dal Consorzio di Bonifica competente territorialmente è un **DN125 PVC (diametro interno 117 mm)**, che consentirà il passaggio di una portata pari a:

Q uscente = 27.12 l/s.

DIMENSIONAMENTO STROZZATURA							
Portata amm.le (Qagr.=10 l/sec/ha*							
Perm _o +90l/sec/ha*lmp _o)	7.25	l/sec	portata ammissibile effluente al ricettore				
			inserire il valore di progetto (calcolato esplicitamente in relazione)				
Battente massimo h	0.90	m	del battente sopra l'asse della strozzatura				
DN max condotta di scarico	60.50	mm					
			inserire il diametro della condotta scelta, che deve essere inferiore				
Si adotta condotta DN	117.00	mm	a DN max. Si consente un minimo funzionale DN 125				
Portata uscente con la condotta adottata	27.12	l/sec					

SUB-COMPARTO 4

Per quanto concerne il sub-comparto 4, essendo gli stalli dei nuovi parcheggi pertinenziali alla strada esistente (via del Paganello) non si prevede la realizzazione ed il dimensionamento della strozzatura, in quanto essi afferiranno direttamente al fosso tombinato a lato della via del Paganello, così come le caditoie presenti al fondo della depressione morfologica (a sud degli stalli stessi) appositamente prevista per l'invarianza idraulica dell'intervento.

SUB-COMPARTO 5a

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 9.13 \text{ I/s}$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 89 cm, sarebbe necessario un diametro di circa 68 mm; tuttavia, il diametro minimo funzionale previsto dal Consorzio di Bonifica competente territorialmente è un **DN125 PVC (diametro interno 117 mm)**, che consentirà il passaggio di una portata pari a:

Q uscente = 26.97 l/s.

DIMENSIONAMENTO STROZZATURA							
Portata amm.le (Qagr.=10 l/sec/ha*							
Perm _o +90l/sec/ha*lmp _o)	9.13	l/sec	portata ammissibile effluente al ricettore				
			inserire il valore di progetto (calcolato esplicitamente in relazione)				
Battente massimo h	0.89	m	del battente sopra l'asse della strozzatura				
DN max condotta di scarico	68.08	mm					
			inserire il diametro della condotta scelta, che deve essere inferiore				
Si adotta condotta DN	117.00	mm	a DN max. Si consente un minimo funzionale DN 125				
Portata uscente con la condotta adottata	26.97	l/sec					

SUB-COMPARTO 5b

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 21.57 \text{ l/s}$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 230 cm, sarebbe necessario un diametro di circa 82 mm; tuttavia, il diametro minimo funzionale previsto dal Consorzio di Bonifica competente territorialmente è un **DN125 PVC (diametro interno 117 mm)**, che consentirà il passaggio di una portata pari a:

DIMENSIONAMENTO STROZZATURA							
Portata amm.le (Qagr.=10 l/sec/ha*							
Perm _o +90l/sec/ha*lmp _o)	21.57	l/sec	portata ammissibile effluente al ricettore				
			inserire il valore di progetto (calcolato esplicitamente in relazione)				
Battente massimo h	2.30	m	del battente sopra l'asse della strozzatura				
DN max condotta di scarico	82.54	mm					
Si adotta condotta DN	117.00	mm	inserire il diametro della condotta scelta, che deve essere inferiore a DN max. Si consente un minimo funzionale DN 125				
Portata uscente con la condotta adottata	43.35	l/sec					

SUB-COMPARTO 6a

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 107.81 \text{ I/s}$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 210 cm, sarebbe necessario un diametro di circa 188 mm; il diametro commerciale disponibile e più vicino a quello calcolato è un **DN200 PVC (diametro interno 188.2 mm)**, che consentirà il passaggio di una portata pari a:

Q uscente = 107.69 l/s.

DIMENSIONAMENTO STROZZATURA			
Portata amm.le (Qagr.=10 l/sec/ha*			
Perm _o +90l/sec/ha*lmp _o)	107.81	l/sec	portata ammissibile effluente al ricettore
Battente massimo h	2.12	m	inserire il valore di progetto (calcolato esplicitamente in relazione) del battente sopra l'asse della strozzatura
DN max condotta di scarico	188.34	mm	
Si adotta condotta DN	188.20	mm	inserire il diametro della condotta scelta, che deve essere inferiore a DN max. Si consente un minimo funzionale DN 125
31 audita conucita div	100.20	mm	a DIVITIAX. SI COISerile un minimo funzionale DIV 125
Portata uscente con la condotta adottata	107.69	l/sec	

SUB-COMPARTO 6b

La portata massima scaricabile in corrispondenza della condotta limitatrice di portata risulta pari a:

$$Q_{MAX} = 37.03 \text{ I/s}$$

Si evince dalla tabella di calcolo sottostante che, in presenza di un battente idraulico stimato preventivamente in circa 184 cm, sarebbe necessario un diametro di circa 114 mm, praticamente coincidente con il diametro minimo funzionale previsto dal Consorzio di Bonifica competente territorialmente, cioè un DN125 PVC (diametro interno 117 mm) che consentirebbe ill passaggio di una portata pari a 38.78 l/s.

DIMENSIONAMENTO STROZZATURA							
Portata amm.le (Qagr.=10 l/sec/ha*							
Perm _o +90l/sec/ha*lmp _o)	37.03	l/sec	portata ammissibile effluente al ricettore				
			inserire il valore di progetto (calcolato esplicitamente in relazione)				
Battente massimo h	1.84	m	del battente sopra l'asse della strozzatura				
DN max condotta di scarico	114.37	mm					
O' - detta - condetta DN	447.00		inserire il diametro della condotta scelta, che deve essere inferiore				
Si adotta condotta DN	117.00	mm	a DN max. Si consente un minimo funzionale DN 125				
Portata uscente con la condotta adottata	38.78	l/sec					

La stima sopra riportata, però, parte dall'assunzione dell'algoritmo più cautelativo e penalizzante, poco applicabile al caso specifico.

Per stimare la portata defluente dalla strozzatura, infatti, si possono usare diverse formule, dipendenti dalle modalità idrauliche di funzionamento nel condotto e quindi dalle condizioni al contorno.

In particolare, ipotizzando (<u>molto cautelativamente</u>) un funzionamento a battente con tratto breve e sbocco libero, la portata è calcolabile mediante la seguente formula:

$$Q = \mu A (2 g h)^{0.5}$$

Con:

Q portata,

 $\mu = 0.6$

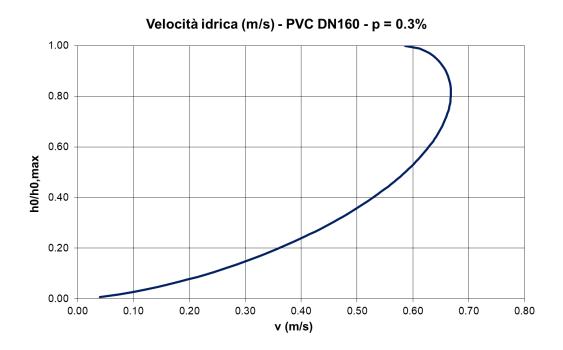
h = battente.

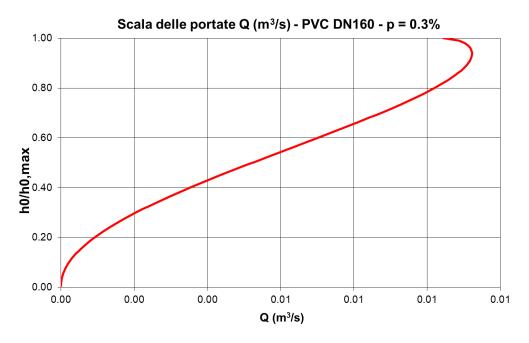
mu = 0,6	Diametro tubo di scarico (mm)										
	00	100	120				` '	350	200	245	
battente	80	100	120	150	160	180	200	250	296	315	
h (ml)	portata defluente in l/sec										
0.2	5.97	9.33	13.44	20.99	23.88	30.23	37.32	58.31	81.75	92.58	
0.3	7.31	11.43	16.45	25.71	29.25	37.02	45.71	71.42	100.12	113.38	
0.4	8.44	13.19	19.00	29.69	33.78	42.75	52.78	82.47	115.61	130.92	
0.5	9.44	14.75	21.24	33.19	37.77	47.80	59.01	92.20	129.25	146.38	
0.6	10.34	16.16	23.27	36.36	41.37	52.36	64.64	101.00	141.59	160.35	
0.7	11.17	17.45	25.14	39.27	44.68	56.55	69.82	109.09	152.93	173.20	
0.8	11.94	18.66	26.87	41.99	47.77	60.46	74.64	116.63	163.49	185.15	
0.9	12.67	19.79	28.50	44.53	50.67	64.13	79.17	123.70	173.41	196.39	
1.0	13.35	20.86	30.04	46.94	53.41	67.59	83.45	130.39	182.79	207.01	
1.1	14.00	21.88	31.51	49.23	56.02	70.89	87.52	136.76	191.71	217.11	
1.2	14.63	22.85	32.91	51.42	58.51	74.05	91.42	142.84	200.24	226.77	
1.25	14.93	23.33	33.59	52.48	59.71	75.57	93.30	145.78	204.37	231.44	
1.3	15.22	23.79	34.25	53.52	60.89	77.07	95.15	148.67	208.41	236.03	
1.4	15.80	24.69	35.55	55.54	63.19	79.98	98.74	154.28	216.28	244.94	
1.5	16.35	25.55	36.79	57.49	65.41	82.79	102.21	159.70	223.87	253.53	
1.6	16.89	26.39	38.00	59.38	67.56	85.50	105.56	164.93	231.21	261.85	
1.7	17.41	27.20	39.17	61.20	69.64	88.13	108.81	170.01	238.33	269.91	
1.8	17.91	27.99	40.31	62.98	71.65	90.69	111.96	174.94	245.24	277.73	
1.9	18.40	28.76	41.41	64.70	73.62	93.17	115.03	179.73	251.96	285.34	
2.00	18.88	29.50	42.49	66.38	75.53	95.59	118.02	184.40	258.50	292.76	
2.1	19.35	30.23	43.54	68.02	77.40	97.95	120.93	188.96	264.89	299.99	
2.2	19.80	30.94	44.56	69.62	79.22	100.26	123.78	193.40	271.12	307.04	

Il diametro commerciale immediatamente superiore a quello succitato è il DN160 PVC (diametro interno pari a 150.6 mm), per il quale si ha – sempre con questa formula - una portata di poco maggiore alla massima ammissibile: con un battente di 182 cm, il DN160 consente infatti il deflusso di circa 63 l/s.

Si sottolinea che il funzionamento a battente si adatta bene ai tratti brevi per i quali si instaura un funzionamento a battente e a sbocco libero. Nei tratti di lunghezza medio-lunga, come nel caso qui esaminato (lunghezza della strozzatura di 25.00 m circa) è più plausibile ipotizzare l'instaurarsi (dopo un transitorio) di un funzionamento in condizioni di moto uniforme.

Tra l'altro, anche la condizione di sbocco libero nel canale è assai ipotetica, in quanto lo scarico è posto poco più in alto del fondo del canale e in occasione di eventi pluviometrici molto importanti è difficile pensare che l'alveo possa presentare livelli idrici contestuali più bassi dello scorrimento della strozzatura in uscita!


La portata massima in moto uniforme può essere calcolata applicando la formula di Chézy:


Qunif =
$$ks \times A \times (R \times i)^{0.5}$$

con ks il coefficiente di scabrezza di Gauckler-Strickler, A l'area bagnata della condotta, R il raggio idraulico (pari a D/4 per le condotte circolari) e i la pendenza di posa della condotta.

La portata massima a bocca piena smaltibile dalla condotta in PVC DN160 (diametro interno 150.6 mm) avente pendenza di posa pari allo 0.30%, calcolata in condizioni di moto uniforme considerando un coefficiente di scabrezza di Manning di 0.0105 s/m^{1/3}, è pari a 11 l/s, quindi una portata notevolmente inferiore rispetto a quella massima ammissibile.

Le figure di seguito rappresentano rispettivamente la scala della velocità e delle portate per la condotta in PVC DN160 e pendenza 0.30%.

In conclusione, la portata realmente smaltibile dal DN160 PVC sarà ricompresa tra 11 l/s e 63 l/s, con valore intermedio molto più vicino a 11 l/s che a 63 l/s. Quindi, con tale condotto, sarà sicuramente garantita la portata limite inferiore ai 37 l/s previsti dalla normativa.

Si dichiara in sintesi che tutti i tratti di fognatura a sezione ristretta terminali, che fungono da limitatori di portata verso i canali Consorziali da ogni sub-comparto individuato progettualmente, sono stati correttamente dimensionati.